Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Orthop Surg ; 14(12): 3367-3377, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36222205

RESUMO

OBJECTIVE: The debate on the superiority of single- or double-bundle for anterior cruciate ligament reconstruction has not ceased. The comparative studies on intra-articular biomechanics after different surgical reconstructions are rare. This study is to evaluate the biomechanical stress distribution intra-knee after single- and double-bundle anterior cruciate ligament reconstruction by three-dimensional finite element analysis, and to observe the change of stress concentration under the condition of vertical gradient loads. METHODS: In this study, magnetic resonance imaging data were extracted from patients and healthy controls for biomechanical analysis. Patients included in the three models were matched in age and sex. The strength and distribution of induced stresses were analyzed in two frequently used procedures, anatomical single-bundle anterior cruciate ligament reconstruction and anatomical double-bundle anterior cruciate ligament reconstruction, using femoral-graft-tibial system under different loads, to mimic a post-operation mechanical motion. The three-dimensional finite-element models for normal ligament and two surgical methods were applied. A vertical force simulating daily walking was performed on the models to assess the interfacial stresses and displacements of intra-articular tissues and ligaments. The evaluation results mainly included the stress of each part of ligament and meniscus. The stress values of different parts of three models were extracted and compared. RESULTS: The stress of ligament/graft at femoral side of three finite-element models was significantly higher than at tibial side, while the highest level was observed in single-bundle reconstruction finite-element model. With the increase of force, the maximum stress in the medial (7.1-7.1 MPa) and lateral (4.9-7.4 MPa) meniscus of single-bundle reconstruction finite-element model shifted from the anterior horn to the central area (p = 0.0161, 0.0479, respectively). The stress was shown to be at a lower level at femoral side and posterior cruciate ligament of intra-knee in two reconstruction finite-element models than that in normal finite-element models, while presented higher level at the tibial side than normal knee (p = 0.3528). The displacement of the femoral side and intra-knee areas in reconstruction finite-element models was greater than that in normal finite-element model (p = 0.0855). CONCLUSION: Compared with the single-bundle technique, the graft of double-bundle anterior cruciate ligament reconstruction has better stress dissipation effect and can prevent postoperative meniscus tear more effectively.


Assuntos
Reconstrução do Ligamento Cruzado Anterior , Humanos , Análise de Elementos Finitos , Marcha , Ligamentos
2.
Polymers (Basel) ; 13(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209853

RESUMO

The limited self-healing ability of cartilage necessitates the application of alternative tissue engineering strategies for repairing the damaged tissue and restoring its normal function. Compared to conventional tissue engineering strategies, three-dimensional (3D) printing offers a greater potential for developing tissue-engineered scaffolds. Herein, we prepared a novel photocrosslinked printable cartilage ink comprising of polyethylene glycol diacrylate (PEGDA), gelatin methacryloyl (GelMA), and chondroitin sulfate methacrylate (CSMA). The PEGDA-GelMA-CSMA scaffolds possessed favorable compressive elastic modulus and degradation rate. In vitro experiments showed good adhesion, proliferation, and F-actin and chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) on the scaffolds. When the CSMA concentration was increased, the compressive elastic modulus, GAG production, and expression of F-actin and cartilage-specific genes (COL2, ACAN, SOX9, PRG4) were significantly improved while the osteogenic marker genes of COL1 and ALP were decreased. The findings of the study indicate that the 3D-printed PEGDA-GelMA-CSMA scaffolds possessed not only adequate mechanical strength but also maintained a suitable 3D microenvironment for differentiation, proliferation, and extracellular matrix production of BMSCs, which suggested this customizable 3D-printed PEGDA-GelMA-CSMA scaffold may have great potential for cartilage repair and regeneration in vivo.

3.
Biomed Res Int ; 2021: 6699910, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937412

RESUMO

Cartilage injury of the knee joint is very common. Due to the limited self-healing ability of articular cartilage, osteoarthritis is very likely to occur if left untreated. Bone marrow mesenchymal stem cells (BMMSCs) are widely used in the study of cartilage injury due to their low immunity and good amplification ability, but they still have disadvantages, such as heterogeneous undifferentiated cells. MicroRNAs can regulate the chondrogenic differentiation ability of MSCs by inhibiting or promoting mRNA translation and degradation. In this research, we primarily investigated the effect of microRNA-210-3p (miR-210-3p) on chondrogenic and adipogenic differentiation of BMMSCs in vitro. Our results demonstrate that miR-210-3p promoted chondrogenic differentiation and inhibited adipogenic differentiation of rat BMMSCs, which was related to the HIF-3α signalling pathway. Additionally, miR-210-3p promotes mRNA and protein levels of the chondrogenic expression genes COLII and SOX9 and inhibits mRNA and protein levels of the adipogenic expression genes PPARγ and LPL. Thus, miR-210-3p combined with BMMSCs is a candidate for future clinical applications in cartilage regeneration and could represent a promising new therapeutic target for OA.


Assuntos
Adipogenia/genética , Condrogênese/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Masculino , MicroRNAs/genética , Modelos Biológicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Fatores de Transcrição/genética
4.
Front Pharmacol ; 11: 471, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32431606

RESUMO

Poly(ε-caprolactone) (PCL) derived scaffolds have been extensively explored in the field of tissue-engineered meniscus (TEM) originating from their good biosafety and biomechanical properties. However, the poor intrinsic hydrophobicity severely hindered their wide applications for the scaffold-assisted tissue regeneration. Herein, we developed a simple strategy on surface modification of three-dimensional (3D) PCL scaffolds via a simply soaking treatment of sodium hydroxide (NaOH) solutions to increase the hydrophilicity and roughness of scaffolds' surfaces. We investigated the effect of hydrolysis degree mediated by NaOH solutions on mechanical properties of 3D scaffolds, considering the importance of scaffolds' resistance to internal force. We also investigated and analyzed the biological performances of mesenchymal stromal cells (MSCs) and meniscal fibrocartilage cells (MFCs) onto the scaffolds treated or untreated by NaOH solutions. The results indicated that hydrophilic modification could improve the proliferation and attachment of cells on the scaffolds. After careful screening process condition, structural fabrication, and performance optimization, these modified PCL scaffolds possessed roughened surfaces with inherent hierarchical pores, enhanced hydrophilicity and preferable biological performances, thus exhibiting the favorable advantages on the proliferation and adhesion of seeded cells for TEM. Therefore, this feasible hydrophilic modification method is not only beneficial to promote smarter biomedical scaffold materials but also show great application prospect in tissue engineering meniscus with tunable architectures and desired functionalities.

5.
Front Pharmacol ; 11: 404, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308625

RESUMO

BACKGROUND: Peripheral blood (PB) is a potential source of chondrogenic progenitor cells that can be used for cartilage repair and regeneration. However, the cell types, isolation and implantation methods, seeding dosage, ultimate therapeutic effect, and in vivo safety remain unclear. METHODS: PubMed, Embase, and the Web of Science databases were systematically searched for relevant reports published from January 1990 to December 2019. Original articles that used PB as a source of stem cells to repair cartilage in vivo were selected for analysis. RESULTS: A total of 18 studies were included. Eight human studies used autologous nonculture-expanded PB-derived stem cells (PBSCs) as seed cells with the blood cell separation isolation method, and 10 animal studies used autologous, allogenic or xenogeneic culture-expanded PB-derived mesenchymal stem cells (PB-MSCs), or nonculture-expanded PBSCs as seed cells. Four human and three animal studies surgically implanted cells, while the remaining studies implanted cells by single or repeated intra-articular injections. 121 of 130 patients (in 8 human clinical studies), and 230 of 278 animals (in 6 veterinary clinical studies) using PBSCs for cartilage repair achieved significant clinical improvement. All reviewed articles indicated that using PB as a source of seed cells enhances cartilage repair in vivo without serious adverse events. CONCLUSION: Autologous nonculture-expanded PBSCs are currently the most commonly used cells among all stem cell types derived from PB. Allogeneic, autologous, and xenogeneic PB-MSCs are more widely used in animal studies and are potential seed cell types for future applications. Improving the mobilization and purification technology, and shortening the culture cycle of culture-expanded PB-MSCs will obviously promote the researchers' interest. The use of PBSCs for cartilage repair and regeneration in vivo are safe. PBSCs considerably warrant further investigations due to their superiority and safety in clinical settings and positive effects despite limited evidence in humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...